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We present a detailed analysis of the effective force between two smooth spherical colloids floating at a fluid
interface due to deformations of the interface in an inhomogeneous pressure field. The results hold in general
and are applicable independently of the source of the deformation provided the capillary deformations are
small so that a superposition approximation for the deformations is valid. We conclude that an effective
long-ranged attraction is possible if the net force on the system does not vanish. Otherwise, the interaction is
short ranged and cannot be computed reliably based on the superposition approximation. As an application, we
consider the case of like-charged, smooth nanoparticles and electrostatically induced capillary deformation.
The resulting long-ranged capillary attraction can be easily tuned by a relatively small external electrostatic
field, but it cannot explain recent experimental observations of attraction if these experimental systems were
indeed isolated.
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I. INTRODUCTION

In view of various applications such as the study of two-
dimensional meltingf1g, investigations of mesoscale struc-
ture formation f2g or engineering of colloidal crystals on
spherical surfacesf3g, the self-assembly of sub-micrometer
colloidal particles at water-air or water-oil interfaces has
gained much interest in recent years. These particles are
trapped at the interface if the colloid is only partially wetted
by both the water and the oil. This configuration is stable
against thermal fluctuations and appears to be the global
equilibrium state, as it is observed experimentally that the
colloids immersed in the bulk phases are attracted to the
interfacef1g ssee also Sec. IId. The mutual interaction be-
tween the trapped colloids at distances close to contact, i.e.,
within the range of molecular forces, is dominated by strong
van der Waals attraction. In order to avoid coagulation due to
this attraction, the colloids can be stabilized sterically with
polymers or with charges such that the colloids repel each
other. Variants of charge stabilization may include the cover-
age with ionizable molecules which dissociate in water, or
the labeling of colloids with charged fluorescent markers.
For charge-stabilized colloids at large distances, the resulting
repulsive force at water interfaces stems from a dipole-dipole
interaction as shown theoretically for point charges on sur-
faces f4g and verified experimentally for polystyrenesPSd
spheres on water-oil interfacesf5g.

Nonetheless, charged colloids at interfaces also show at-
tractions far beyond the range of van der Waals forces. The
corresponding experimental evidence can be roughly classi-
fied as follows.sid According to Refs.f6–10g, PS spheres
sradii R=0.25̄ 2.5 mmd on flat water-air interfaces using
highly deionized water exhibit spontaneous formation of
complicated metastable mesostructures. They are consistent
with the presence of an attractive, secondary minimum in the
intercolloidal potential at distancesd/R<3¯10 with a
depth of a fewkBT. The use of water slightly contaminated
by ions seems to move the minimum further out and to re-
duce its depthf10,11g. sii d In Ref. f12g, polysmethyl-

methacrylated sPMMAd spheres with radiusR=0.75mm
were trapped at the interface of water droplets immersed in
oil. Here, the secondary minimum has been measured at a
distanced/R=7.6 and is reported to be surprisingly steep.
The tentative explanation of these findings given in Ref.f12g
invokes an analog of long-ranged flotation or capilllary
forces which decay~1/d. This interpretation was criticized
in Ref. f13g swith which the authors of Ref.f12g agreedf14gd
and in Ref.f15g which both concluded that possible capillary
forces in this system are much shorter ranged, i.e.,~d−7, but
the authors of these references disagree with respect to the
sign of this shorter-ranged force. In yet another twist of the
story, after completion of our work we encountered the very
recent Ref.f16g in which the authors claim that long-ranged
capillary forces~1/d caused by the colloidal charges persist
for submicrometer particles. This conclusion is based on
measurements of the meniscus shape around single glass
spheres with radii 200̄ 300 mm floating at water-oil and
water-air interfaces.

Motivated by the experimental data summarized above
and the still incomplete theoretical understanding, here we
undertake a quite general analysis of capillary interactions
between two spherical colloids trapped at fluid interfaces.
Almost all previous studies have focused on the case of a
constant pressure difference across the interfacef17g. Our
study generalizes the results for the capillary force by taking
into account the effect of a spatially varying stress field act-
ing on the interface; it also complements or corrects recent
studies in the same directionf15,16g. We characterize the
system by a general stress field, e.g., due to a discontinuous
electrostatic field at the interface, and by a net force on the
colloid, e.g., of gravitational or electrostatic origin. In Sec. II
we present a free energy model for a single colloid trapped at
an interface in the limit of small stresses and forces. The
general solution for the interface deformation will be used in
Sec. III in order to determine the effective potential between
two colloids within the superposition approximation. In view
of the differing theoretical results in the literature, the deri-
vation of the interface deformation and the resulting effective
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potential is presented in detail in order to reveal properly the
subtleties involved. The presence of a long-ranged attractive
capillary force~1/d is possible only if the system is not
mechanically isolated, in which case the role of a restoring
force fixing the interface, e.g., due to gravity or interface
pinning, is essential. In Sec. IV we apply the results to the
case of charged polymeric spheres on water interfaces. It
turns out that the constraint of approximate mechanical iso-
lation of the experimental systems renders the capillary in-
teraction basically short ranged. In the context of our model,
long-ranged attractive forces~1/d only arise in the presence
of an external electric field. We shall discuss the relation to
previous theoretical results, especially in view of the experi-
mental results reported in Refs.f12,16g. Directions for fur-
ther research will be pointed out. In Sec. V we summarize
our results.

II. EQUILIBRIUM STATE OF A SINGLE COLLOID

In this section we consider as a first step the equilibrium
state of a single colloid of radiusR at the interface between
two fluid phases denoted as 1 and 2. The contact angle
formed by the interface and the colloid surface is given by
Young’s law

cosu =
g1 − g2

g
, s1d

whereg is the surface tension between phases 1 and 2, andgi
is the surface tension between the colloid and phasei. As a
reference state, with respect to which changes in free energy
will be measured, we take a planar meniscus configuration
with the colloid at such a heighthref that Young’s law is
satisfiedsFig. 1d. This corresponds to the equilibrium con-
figuration of an uncharged colloid at the interface if its
weight can be neglected—which for generic cases is a safe
approximation forR&1 mm f17g ssee also Sec. IVd. We
model the colloid as a smooth sphere so that the system is
invariant under rotations around the colloid axis perpendicu-
lar to the reference planar meniscus. The presence of charges
induces a shift of the systemscolloid and interfaced with
respect to the reference state. Here we neglect corresponding
changes in the surface tensionsg andgi; this approximation
is expected to be valid provided the concentration of charges
is sufficiently small. This shift is characterized by the menis-

cus profileusrd relative to the planar configuration and by the
heighth of the colloid center. In the reference configuration,
the charge distribution is assumed to be already in equilib-
rium. In the following we do not consider the degree of
freedom “charge density field” explicitly but take it to be
fixed to that of the reference configuration. This amounts to
neglecting the feedback of the interface displacement on the
charge distribution. It turns out to be useful to introduce the
radius r0 of the three-phase contact line and the anglej as
auxiliary variablesssee Fig. 2d.

A. The free energy

In this subsection we formulate a free energy functional
for the degrees of freedomusrd andh. As shown later, for the
cases of interest here the deviations from the reference con-
figuration are small enough to justify a perturbative treat-
ment, and the free energy can be expanded up to quadratic
order inDhªh−href andusrd. We denote withPsrd the ver-
tical force per unit area acting on the meniscus surface in the
reference configuration. In the case of a charged colloid,
Psrd is given by thezz component of the difference of the
Maxwell stress tensor right above and below the meniscus,
plus the pressure difference acting across the meniscussin-
cluding an imbalance in osmotic pressure due to the different
concentration of ions just above and below the meniscusd
f15,18g. We introduce the following dimensionless parameter
to measure the relative strength of this force:

«P ª

1

2pgr0,ref
E

Smen,ref

dAP =
1

gr0,ref
E

r0,ref

`

drrPsrd, s2d

where the integral extends over the flat meniscusSmen,refsthe
planez=0 with a circular hole of radiusr0,refd. We assume
Psr →`d, r−n with n.2, so that the integral converges. In
the same spirit we introduce the total vertical forceF=Fez
acting on the charged colloid in the flat reference configura-
tion, which includes gravity, the electrostatic force, and the
total si.e., hydrostatic and osmoticd pressure exerted by the
fluids. This leads to the definition

FIG. 1. Geometry of the reference state. The equilibrium contact
angle u fixes the heighthref=−Rcosu of the colloid center, the
contact radiusr0,ref=Rsinu, and the auxiliary angular variablejref

=u.

FIG. 2. Description of deviations from the reference state.usrd
is the meniscus profile andh is the height of the colloid center. The
anglej and the radiusr0=Rsinj of the three-phase contact line are
auxiliary variables, which depend onusrd and h through the geo-
metrical relationshiph=usr0d−Rcosj. In this mesoscopic descrip-
tion r0 is defined as the position where the meniscus profile inter-
sects the surface of the sphere.Ai is the surface area of the colloid
exposed to phasei.
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«F ª −
F

2pgr0,ref
. s3d

These two dimensionless parameters will appear naturally in
the course of the calculations. If«P and «F vanish, the ref-
erence configurationis the equilibrium state; it is the global
minimum of the free energy functional given in Eqs.s4d and
s13d below if P;0, F;0. The aforementioned perturbative
expansion of the free energy can be rephrased as an expan-
sion in terms of the small parameters«P and«F.

The free energyF of the colloid expressed relative to the
reference configuration consists of five terms:

F = Fcont+ Fmen+ Fvol + Finter + Fcoll. s4d

In the following we discuss each contribution.
Fluid contact of the colloid. With Ai denoting the surface

area of the colloid which is in contact with phasei, the sur-
face free energy of the colloid due to its exposure to the
phases 1 and 2 is

Fcont= g1A1 + g2A2 − sg1A1,ref+ g2A2,refd. s5d

In Appendix A we express this contribution as a function of
Dh and usrd. The final result, valid up to corrections of at
least third order in«P or «F, reads

Fcont. pgfusr0,refd − Dhg2 + pgsr0
2 − r0,ref

2 d. s6d

Change of the meniscus area. The free energy contribu-
tion due to variations in the meniscus area relative to the
reference state reads

Fmen= gE
Smen

dAÎ1 + u ¹ uu2 − gE
Smen,ref

dA, s7d

whereSmen is the surface of the fluid interface projected onto
the planez=0 sin which the reference interface is locatedd,
and¹ is the gradient operator on the flat reference interface.
For small slopessu¹uu!1d one obtains

Fmen. gE
Smen\Smen,ref

dA+ 1
2gE

Smen

dAu ¹ uu2

. pgsr0,ref
2 − r0

2d + 1
2gE

Smen,ref

dAu ¹ uu2. s8d

Since theu-dependent term is of second order inu, we have
approximated the integration domainSmenby Smen,ref; the cor-
rections are at least of third order in the small parameters«P

or «F. The first term in this expression represents the change
in the area of the meniscus which is cut out by the colloid,
and in Eq.s4d it cancels the second term of Eq.s6d.

Volume forces on the fluids. We consider the case that the
only volume force acting on the fluid phases is gravity. The
electrostatic forces are active only at the surfaces, where a
net charge can accumulate. First, there is a contribution due
to the vertical displacementDh of the colloid; this contribu-
tion is contained inFcoll fsee Eq.s12d belowg, since the total
force F includes the buoyancy force. Second, there is the
change in gravitational potential energy relative to the refer-
ence state due to the meniscus deformationusrd. We assume

that the mass density of phase 2 is larger than the one of
phase 1, i.e.,%2.%1, and define the capillary length

l ªÎ g

sr2 − r1dg
s9d

in terms of the accelerationg of gravity. This leads tossee
Fig. 2d:

Fvol =
1

2
gE

Smen,ref

dA
u2srd

l2 = pgE
r0,ref

`

drr
u2srd

l2 , s10d

plus corrections of third order in«P, «F stemming from the
fluid contained in the small volume,r0,refuusr0,refduur0

−r0,refu.
As it will be shown in Sec. II C, the precise form ofFvol

is irrelevant in the limitl→` sl<1 mm, which is much
larger than any other relevant length scale in the systems we
intend to studyd. Indeed, one can consider the functional
form s10d just as the simplest mathematical way to achieve
that the reference meniscus configurationusrd;0 is well de-
fined and stable when«P=«F=0.

Force on the fluid interface. The aforementioned surface
force densityPsrd acts on the fluid interface between phases
1 and 2. The free energy change due to the ensuing displace-
ments of the meniscus is

Finter . −E
Smen

dAPu . −E
Smen,ref

dAPu

= − 2pE
r0,ref

`

drrPsrdusrd. s11d

HerePsrd is the surface force in thereferenceconfiguration
sP.0 corresponds to a force pointing upwardd. Changes in
the force induced by meniscus deformations and colloidal
displacements contribute terms of higher orders in«P or «F
in Eq. s11d. The replacement ofSmen by Smen,ref in Eq. s11d
introduces terms of higher order, too.

Contribution from the colloid. The free energy change due
to a vertical displacement of the colloid is

Fcoll . − FDh, s12d

whereF is the vertical force on the colloid in thereference
configuration. Like forFinter, changes ofF due to deviations
from the reference configuration contribute to higher order
terms.

In conclusion, by adding Eqs.s6d, s8d, and s10d–s12d we
obtain the following approximate expression for the total
free energy, which is correct up to second order in«P or «F,
and which is a function ofDh and a functional ofusrd:

F . 2pgE
r0,ref

`

drrF1

2
Sdu

dr
D2

+
u2

2l2 −
1

g
PuG + pgfu0 − Dhg2

− FDh, s13d

whereu0;usr0,refd.
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B. Minimization of the free energy

The equilibrium configuration of the system minimizes
the free energy expressions13d. The minimization proceeds
in two stages. First we seek the minimum with respect toDh
at fixedusrd:

]F
]sDhd

= 0 ⇒ Dh = u0 − «Fr0,ref, s14d

where we have used the definitions3d. Using repeatedly the
definitions ofh andr0 in terms of the auxiliary anglej sFig.
2d we can compute the change of the contact radius,

Dr0 ; r0 − r0,ref= Rssinj − sinud

. su − jdhref .
Dh − u0

r0,ref
href = − «Fhref, s15d

plus corrections of second order in«P, «F. In the second step,
we minimize Eq.s13d with respect tousrd at fixedDh. This is
a problem of variations with a free boundary condition atr
=r0,ref f19g. Variation with respect tousr Þ r0,refd yields a
second-order ordinary differential equation

d2u

dr2 +
1

r

du

dr
−

1

l2u = −
1

g
Psrd, s16d

while variation with respect tou0 provides a boundary con-
dition,

u08 ª Udu

dr
U

r=r0,ref

=
u0 − Dh

r0,ref
= «F, s17d

where the last equality follows from Eq.s14d. The second
boundary condition one has to impose on Eq.s16d follows
from the requirement that the meniscus is asymptotically flat
far from the colloidsassuming thatPsr →`d=0d:

lim
r→`

usrd = 0. s18d

Equations16d describes mechanical equilibrium of the inter-
face such that the Laplace pressure balances the forces acting
on the interface. The boundary conditions17d expresses me-
chanical equilibrium of the colloidal particle: At the contact
line si.e., the circle with radiusr0 at z=u0d the interface ex-
erts a force onto the colloid which has a nonvanishing con-
tribution only in z direction with the magnitude
2pgr0 sinfarctansu08dg<2pgr0,refu08. This contact line force is
balanced by the total forceF.

The solution of Eqs.s16d–s18d can be written in terms of
the modified Bessel functions of zeroth order

usrd =
1

g
I0S r

l
DE

r

`

dssPssdK0S s

l
D

+
1

g
K0S r

l
DFA +E

r0,ref

r

dssPssdI0S s

l
DG , s19d

where the integration constantA is determined by the bound-
ary conditions17d.

C. Asymptotic behavior in the limit l\`

For typical values of the parameters,l is of the order of
millimeters and therefore much larger than any other length
scale occurring for experiments with submicrometer colloids.
In order to study the intermediate asymptoticssr0,ref,r !ld
of usrd as given by Eq.s19d, we insert the asymptotic expan-
sions of the Bessel functionsf20g asl→` and retain those
terms which do not vanish in this limit. Assuming thatPsr
→`d decays sufficiently fast, Eq.s19d reduces to

usrd . r0,refs«P − «Fdln
Cl

r
−

1

g
E

r

+`

dssPssdln
s

r
, s20d

where C=2e−gE.1.12 andgE is Euler’s constant. In Eq.
s20d, we have expressed the integration constantA appearing
in Eq. s19d in terms of«F by using the boundary condition
s17d. The first term in Eq.s20d is a solution of the homoge-
neous part of Eq.s16d swith l−1=0 in the equationd, demon-
strating that the limitl→` is singular as long as«PÞ«F.
The second term corresponds to a particular solution of the
inhomogeneous differential equation. If the surface force
Psrd decays algebraically,Psr →`d~ r−n, this term decays
like r2-n ssince we have assumedn.2d, so that the logarith-
mic contribution is dominant. Ifnø2, the asymptotic behav-
ior is no longer given by Eq.s20d but a different dependence
on l arises.

At distancesr of the order ofl, the expressions20d is not
valid and a crossover to the exact solutions19d takes place in
order to satisfy the boundary condition at infinityfEq. s18dg.
Figure 3 sketches the behavior of the meniscus profileusrd.
As can be checked directly in the differential Eq.s16d, one
hasusrd,sl2/gdPsrd~ r−n asymptotically asr → +`, which
expresses the balance between the surface forcePsrd on the
meniscus and the gravitational force. There is, however, an-
other intermediate regimer @l but not too large, in which
usrd decays~exps−r /ld and which corresponds to the solu-
tion of Eq. s16d with P set to zero, i.e., when gravity is

FIG. 3. The meniscus solution for the parameter choice
l / r0,ref=102, «F=10−2, and a dipolelike stress fieldr0,refPsrd /g
=0.08sr0,ref/ rd6 s«P=2·10−2d. The solid line represents the solution
usrd given by Eq. s19d. The dashed line is the intermediate
asymptotic solution given by Eq.s20d. Note that the capillary length
l is typically of Os1 mmd. In the present context we focus on the
length scaler0,ref,r !l, for which Eq.s20d holds.
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balanced by the Laplace pressure induced by the meniscus
curvature.

These conclusions, as well as the functional dependence
of usrd on Psrd, are robust and independent of the details of
the boundary condition atr →`. In order to support this
statement, we consider two cases which implement the dis-
tant boundary condition differently.

Pinned interface. In the absence of gravity the interface is
assumed to be pinned at a finite distanceL from the colloid.
This corresponds to settingl−1=0 in Eq. s16d and replacing
Eq. s18d by the boundary conditionusLd=0. In this case the
solution of Eq.s16d is given by

usrd = r0,refs«̃P − «Fdln
L

r
−

1

g
E

r

L

dssPssdln
s

r
, s21d

where

«̃P ª

1

gr0,ref
E

r0,ref

L

drrPsrd, s22d

in analogy to Eq.s2d. In the intermediate asymptotic regime
sr0,ref,r !Ld, the meniscus profile is then given by

usrd . r0,refs«P − «Fdln
L

r
−

1

g
E

r

+`

dssPssdln
s

r
, s23d

assuming thatPsrd decays sufficiently fast so that the inte-
grals in Eqs.s21d ands22d converge asL→`. Equations23d
resembles Eq.s20d with Cl replaced byL.

Pinned curved reference interface. In some experiments
the interface between phases 1 and 2 is in fact closed, so that
the colloidal particle lies at the surface of a large nonvolatile
spherical droplet of phase 2 which is immersed in phase 1
f12g sFig. 4d and fixed by certain meansse.g., by a glass
plated. The free energy functionals13d has to be modified to
account for the curvature of the reference interface as well as
for the constraint that the droplet volume remains unchanged
under deformation. To determine the interface deformation,
we minimize the functional and employ the boundary condi-
tion that the droplet is fixed at some point far from the col-
loid. The mathematical details and the corresponding solu-

tion for usrd are presented in Appendix B. Here we quote
only the intermediate asymptotic behaviorsr0,ref,r !Rdrop,
whereRdrop is the radius of the undeformed dropletd:

usrd . r0,refs«P − «Fdln
C̃Rdrop

r
−

1

g
E

r

+`

dssPssdln
s

r
,

s24d

with C̃ a numerical constant given by Eq.sB23d. Again Eq.
s24d closely resembles Eqs.s20d and s23d.

The physical reason for the occurrence of the singularity
in the limit l, L, Rdrop→ +` is that a “restoring force” far
from the particle is required to yield a well-defined unper-
turbed interface which allows one to determine the deforma-
tion usrd unambiguously. For example, if one takes the limit
l→ +` in the Young-Laplace Eq.s16d, it is inconsistent to
impose the boundary conditionusr → +`d=0 in the corre-
sponding solution. The special case«P=«F, however, is not
singular; this will be discussed in Sec. IV. Furthermore, the
comparison of Eqs.s20d, s23d, ands24d demonstrates that the
functional form of the intermediate asymptotic behavior is
independent of how the restoring force is implemented. This
corresponds to the so-called intermediate asymptotic behav-
ior of the second kindf21g, characterized by the following
features.

s1d There is a length scalesl, L, or Rdropd which is much
larger than the other length scales of the system under con-
sideration and which seems—at first sight—to be irrelevant.

s2d Nevertheless, this length scale determines the domi-
nant logarithmicsor more generally, the power lawd depen-
dence.

s3d The detailed physical origin of this length scalesin the
examples we have considered, gravity, pinning of a reference
flat or curved interfaced does not matter.

Well known examples of this kind of asymptotic behavior
are critical phenomena in phase transitionsf22g. In that case,
it is the microscopic length scale given by the amplitude of
the correlation length which cannot be set to zero although it
is much smaller than the correlation length itself. This mi-
croscopic length scale is required to formulate the power-law
behavior of certain properties of the system, but its detailed
physical origin is unimportant for the universal decay expo-
nents of the power laws.

III. EFFECTIVE INTERACTION POTENTIAL OF TWO
FLOATING COLLOIDS

In this section we consider the equilibrium state of two
identical colloids floating at the interface at a fixed lateral
distanced and compute the effective interaction potential
Vmensdd generated by the meniscus. The free energy can be
derived along the same lines leading to Eq.s13d, but with
due account for the fact that in the presence of two colloids
the meniscus slope no longer exhibits rotational symmetry.
NonethelessVmendepends only on the distanced between the
centers of the two spheres. The reference configuration is
that of two colloids floating on a planar interface with the
corresponding reference free energy being independent ofd.

FIG. 4. Colloid at the surface of a droplet of phase 2 immersed
into phase 1. The radiusRdrop of the droplet, which is spherical
without the colloid, is usually much larger than the colloid radiusR.
sThe deformation of the droplet has been exaggerated.d
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In this case one has for the free energy relative to that of the
reference configuration a contributionFmen+Fvol+Finter
from the meniscus and a contribution of the formFcont
+Fcoll from each colloid.sThe total free energy includes also
the direct interaction between the colloids; this contribution
will be considered in Sec. IV Bd. From Eqs.sA7d, s8d, and
s10d–s12d one obtains

F̂ . gE
R2\sS1øS2d

dAF1

2
u ¹ ûu2 +

û2

2l2 −
1

g
P̂ûG

+ o
a=1,2

H g

2r0,ref
R

]Sa

d,fDĥa − ûg2 − F̂aDĥaJ . s25d

Here, û is the meniscus profile in the presence of two col-

loids, Dĥa are the corresponding heights,P̂ is the vertical
force per unit area on the meniscus in the reference configu-

ration, andF̂a is the force on each colloid. By symmetry, one

hasDĥ1=Dĥ2 andF̂1=F̂2. Sa are the circular disks delimited
by the contact lines of the colloids in the reference configu-
ration,]Sa are the contact lines, with the convention that we
trace them counterclockwise, andSmen,ref=R2\ sS1øS2d ssee
Fig. 5d.

A. Minimization of the free energy within the superposition
approximation

The equilibrium configuration is the minimum of the free
energy given by Eq.s25d. The minimization procedure fol-

lows closely Sec. II B. First, minimizing with respect toDĥa

at fixed meniscus heightû leads to the height of the colloids,

]F
]sDhad

= 0 ⇒ Dĥa = ū̂a − «F̂r0,ref, s26d

where

ū̂a ª
1

2pr0,ref
R

]Sa

d,û s27d

is the mean height of the contact line. In the next step, we

minimize with respect toû at fixed Dĥa. Variation in the
interior of the domainR2\ sS1øS2d provides a second-order
partial differential equation

¹2û −
1

l2û = −
1

g
P̂, s28d

while variation at the boundary]S1ø]S2 provides the fol-
lowing transversality conditionsf19g:

]ûsr d
]na

=
ûsr d − Dĥa

r0,ref
= «F̂ +

ûsr d − ū̂a

r0,ref
, r = sx,yd P ]Sa,

s29d

where the last equality follows from Eq.s26d. In this expres-
sion,] /]na is the derivative in the outward normal direction
of ]Sa. fIn this way, the triadsen,et ,ezd is right-handed,
whereen is the unit vector in the outward normal direction,et
is the unit vector in the counterclockwise tangent direction,
and ez is the unit vector in the positivez direction.g When
applying the transversality condition, in the context of
Gauss’ theorem one must keep in mind that the boundary of
the regionR2\ sS1øS2d consists of the contours]Sa traced in
clockwise directionwith the normals directed towards the
interior of Sa. fThe boundary atr →` does not contribute
due to Eq.s30d.g In the special case of a single colloid, ro-
tational invariance reduces Eq.s29d to Eq. s17d. Finally, one
has the additional boundary condition

lim
r→`

ûsr d = 0. s30d

The solution of Eq.s28d with the boundary conditions given
by Eqs.s29d and s30d is a difficult task.fWe are only aware
of the—already very involved—solution of the homoge-

neous Eq.s28d, i.e., P̂=0, with the simplified boundary con-
dition ]û/]na=«F̂ f23g.g For the present purpose, one can use
the so-calledsuperposition approximationf25,24,26g, which
yields the correct solution in the asymptotic limit of large
separationd@R between the colloids. Letua denote the
equilibrium meniscus profile as if colloida was alone, with
Pa andFa denoting the corresponding forces. The superpo-
sition approximation then reads:

û . u1 + u2,

P̂ . P1 + P2, s31d

F̂ . F1 = F2.

Notice that the fieldsuasr d and Pasr d are defined in the

domainR2\Sa, while the fieldsûsr d andP̂sr d are defined in
the smaller domainR2\ sS1øS2d. Equationss28d ands30d are

FIG. 5. Top viewsprojection onto the planez=0d of the refer-
ence configuration with two colloids.d is the distance between the
colloid centers.S1 andS2 are disks of radiusr0,ref, the correspond-
ing circumferencesscounterclockwised are]S1 and]S2. The projec-
tion of the interface isSmen,ref=R2\ sS1øS2d.
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fulfilled by this approximate solution, but the boundary con-
dition s29d is violated: using Eqs.s31d and the boundary
condition in Eq.s17d for the single-colloid solution, one ob-
tains

F ]ûsr d
]n1

− «F̂ −
ûsr d − ū̂1

r0,ref
G

rP]S1

. F ]u2sr d
]n1

−
1

r0,ref
Hu2sr d −

1

2pr0,ref
R

]S1

d,u2JG
rP]S1

,

s32d

and a similar expression for the other colloid with the indices
1 and 2 interchanged. In general, this expression does not
vanish as required by Eq.s29d. If d is large, Eq.s32d can be
evaluated by expandingu2 into a Taylor series around the
center of colloid 1, yielding to lowest orderse1 is the out-
ward directed normal unit vector of]S1d

F ]ûsr d
]n1

− «F̂ −
ûsr d − ū̂1

r0,ref
G

rP]S1

.
1

4
r0,reffe1e1: = = u2sdd + =2u2sddg s33d

in dyadic notation. Inserting the single-colloid solution given
in Eq. s20d, one finds that this expression decays liked−2 if
«FÞ«P, and likePsdd,d−n if «F=«P.

The superposition solution can be used to determine the
vertical displacement according to Eq.s26d:

Dĥa . Dh + ū, s34d

whereDh is the relative vertical displacement of an isolated
colloid fEq. s14dg and

ūª

1

2pr0,ref
R

]S1

d,u2 s35d

is the average of the single-colloid meniscus height at the
contact line of the other colloid.

B. Effective interaction potential

The meniscus-induced effective potential between the two
colloids swithout their direct interactiond is defined as

Vmensdd ª F̂ − F1 − F2, s36d

where F̂ is the free energy of the two-colloid equilibrium
configurationfEq. s25dg while F1=F2 is the single-colloid
equilibrium free energyfEq. s13dg. As noted before the en-
ergy of the reference configuration is independent of the
separationd and drops out from Eq.s36d. We insert Eqs.
s31d, s34d, ands35d into Eq. s36d and exploit the invariance
of the free energy under exchange of the colloids, i.e., the
symmetry under exchanging indices 1↔2. After carrying

out some analytic manipulations one finds the following ex-
pression for the effective potential:

Vmensdd . E
R2\sS1øS2d

dAFgs=u1d · s=u2d +
g

l2u1u2 − 2P1u2G
−E

S1

dAFgu = u2u2 +
g

l2u2
2 − 2P2u2G

+
g

r0,ref
R

]S1

d,fū − u2g2 − 2Fū. s37d

The first integral accounts for the change in surface energy,
gravitational potential energy, and surface-stress potential
energy of the meniscus due to the overlap of the meniscus
deformations caused by the two colloids. The second integral
is the corresponding change due to the fact that the interface
is reduced by an amountS1 compared to the single-colloid
case because of the presence of the second colloid. The third
integral is the change in surface free energy of one colloid
due to the extra meniscus deformation induced by the second
colloid. The last term is the change in energy due to the
vertical displacement of one colloid by this extra meniscus
deformation.

For the mathematical manipulations to follow, it is suit-
able to rewrite Eq.s37d by applying Gauss’ theorem to the
integrals involving=u and by using the fact that the func-
tions ua fulfill Eq. s16d individually, e.g.,

gE
R2\sS1øS2d

dAs=u1d · s=u2d

= gE
R2\sS1øS2d

dAf= · su2 = u1d − u2=2u1g

= − gR
]S1

d,
]su1u2d

]n1

+E
R2\sS1øS2d

dAFP1u2 −
g

l2u1u2G .

s38d

Thus one obtains from Eq.s37d:

Vmensdd . −E
R2\sS1øS2d

dAP1u2 +E
S1

dAP2u2

− gR
]S1

d,
]su1u2d

]n1

−
1

2
gR

]S1

d,
]u2

2

]n1

+
g

r0,ref
R

]S1

d,fū − u2g2 − 2Fū. s39d

In this form all the integrals, except the first one, are per-
formed over bounded domains. This allows one to carry out
a Taylor expansion which yields a uniformly valid
asymptotic expansions of the terms asd→`. In the follow-
ing calculations, the integrals are evaluated in polar coordi-
nates with the origin at the center ofSa andr a is the position
vector with respect to this origin. In particular,r 2=dex is the
center of colloid 1 with respect to the center of colloid 2, and
r 1=−dex is the center of colloid 2 with respect to the center
of colloid 1 sFig. 5d so that, e.g.,ua=usur aud.
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s1d In order to compute the leading asymptotic behavior
of the first term in Eq.s39d as d→` we distinguish two
cases.

sad «PÞ«F: In this case,u, log r fEq. s20dg while P
, r−n sn.2d asr →`. Asymptotically the main contribution
stems from the region nearS1 and

E
R2\sS1øS2d

dAP1u2 . usddE
R2\S1

dAP1 = 2pgr0,ref«Pusdd,

s40d

employing the definitions2d. It will turn out that there is no
need to compute also the next-to-leading term in order to
obtain Vmensd→`d, as the leading term will be part of the
leading contribution toVmen and it will not be cancelled by
other contributions.

sbd «P=«F: In this caseu, r2−n if Psr →`d, r−n. The
regions contributing mainly to the integral are the neighbor-
hoods ofS1 andS2. We employ the Taylor expansion of the
integrandswhich is valid up to a maximum order depending
on how fastP decaysd to evaluate the leading and the next-
to-leading contributions ifn.4 susing dyadic notationd:

E
R2\sS1øS2d

dAP1u2 . E
R2\S1

dAP1fu2 + r 1 · s=ud2

+ 1
2r 1r 1:s= = ud2 + ¯ gr 2=dex

+E
R2\S2

dAu2fP1 + ¯ gr 1=−dex

. 2pgr0,ref«Pusdd

+ 1
2p=2usddE

r0,ref

`

drr3Psrd

+ PsddE
R2\S2

dAu2 + ¯ . s41d

We can simplify the result further by evaluating the last in-
tegral by repeated partial integration with the explicit solu-
tion for u given in Eq.s20d:

E
R2\S2

dAusr2d =
1

2
pr0,ref

3 F«P −
2u0

r0,ref

−
1

gr0,ref
3 E

r0,ref

`

drr3PsrdG . s42d

One finally obtains

E
R2\sS1øS2d

dAP1u2 . 2pgr0,ref«Pusdd + F2E
R2\S2

dAusr2d

−
1

2
pr0,ref

3 S«P −
2u0

r0,ref
DGPsdd + ¯ ,

s43d

where we have employed Eq.s28d swith l−1=0 for simplic-
ityd. Convergence of the integral ofu imposes the more strin-
gent constraintn.4 on the decay ofP fsee Eq.s42dg.

The validity of formulass40d and s43d has been checked
explicitly by comparing their predictions with the numerical
evaluation of the integral for a surface stress of the formP
~ r−n with n.4.

s2d The second term in Eq.s39d can be estimated in the
limit d→` by expanding the integrand into a Taylor series,
which is uniformly valid in the integration domain

E
S1

dAP2u2 . E
S1

dAfP2u2 + ¯ gr 2=dex

. pr0,ref
2 Psddusdd + ¯ . s44d

s3d The third term in Eq.s39d reads

R
]S1

d,
]su1u2d

]n1

=E
0

2p

dwfr 1 · = su1u2dgr1=r0,ref
.E

0

2p

dwSsr 1 · = dHu1Fu2 + r 1 · s=ud2 +
1

2
r 1r 1:s= = ud2 + ¯ G

r 2=dex

JD
r1=r0,ref

s45d

.2pr0,refusddUdu

dr
U

r=r0,ref

+
p

2
r0,ref=

2usddUdsr2ud
dr

U
r=r0,ref

+ ¯ . 2pr0,ref«Fusdd −
p

2g
r0,ref

3 S«F +
2u0

r0,ref
DPsdd + ¯

s46d
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using the boundary condition foru in Eq. s17d.
s4d The fourth term in Eq.s39d is evaluated analogously:

R
]S1

d,
]u2

2

]n1

=E
0

2p

dwfr 1 · = u2
2gr1=r0,ref

s47d

.E
0

2p

dwhr 1 · fs=u2d2

+ r 1 · s= = u2d2 + ¯ gr 2=dex
jr1=r0,ref

. pr0,ref
2 =2u2sdd + ¯ . s48d

s5d The fifth term in Eq.s39d is given by

1

r0,ref
R

]S1

d,fu2 − ūg2 =E
0

2p

dwu2
2 − 2pū2

. 1
2pr0,ref

2 f=2u2sdd − 2u=2usddg + ¯

. 1
2pr0,ref

2 F=2u2sdd +
2

g
PsddusddG

+ ¯ . s49d

s6d In order to evaluate the sixth term in Eq.s39d, we
expandu2 in the definition given by Eq.s35d:

ū =
1

2pr0,ref
R

]S1

d,u2

. usdd +
1

4
r0,ref

2 =2usdd + ¯

. usdd −
1

4g
r0,ref

2 Psdd + ¯ . s50d

The asymptotic behavior of the effective potential is finally
obtained from Eq.s39d by collecting all terms. There are two
qualitatively different cases.

«PÞ«F: The limit l→` is singular and the single-colloid
meniscus profile exhibits a logarithmic dependence. One
finds that the leading contribution is provided by the terms
proportional tousdd:

Vmensdd . 2pgr0,refs«F − «Pdusdd

. − 2pgr0,ref
2 s«F − «Pd2 ln

Cl

d
, sR! d ! ld,

s51d

which represents a long-ranged attractive effective potential,
irrespective of the sign of the forcesF andP acting on the
system.

«P=«F: The single-colloid meniscus profile decays like
usdd,d2−n if Psdd,d−n. The leading contribution is propor-
tional toPsdd, because the terms proportional tousdd cancel
each other.

Vmensdd . − 2PsddE
R2\S

dAu, sR! d ! ld. s52d

This correspond to a shorter-ranged effective interaction,
which in principle can be either attractive or repulsive de-
pending on the precise form of the functionPsrd. In the
particular case thatPsrd decays monotonically to zero, e.g.,
Psrd~ r−n, it is easy to check thatVmen amounts to a repul-
sive force, because the sign ofu is opposite to the sign ofP.

We have seen that the error committed by the superposi-
tion approximation in satisfying one of the boundary condi-
tions, Eq.s33d, decays likePsdd, too. This suggests that the
corrections to the superposition approximation could modify
the precise value of the constant factor acting as an ampli-
tude in Eq.s52d, anda priori it cannot be excluded that there
are cancellations leading to a vanishing amplitude, and there-
fore to an even faster decay for larged. Thus the superposi-
tion approximation might not be reliable enough for calcu-
lating Vmen if «P=«F.

If one traces back the origin of the dominant contributions
to Vmen, one finds that in both cases only the first, third, and
sixth term in Eq.s39d are relevant. They correspond physi-
cally to the effect of the overlap of the two single-colloid
meniscus profiles and the change of the colloid heightffirst
integral and the term −2Fū in Eq. s37d, respectivelyg.

IV. APPLICATIONS AND DISCUSSION

Equationss51d ands52d describe the asymptotic behavior
of the meniscus-induced effective intercolloidal potential and
thus represent a central result of our analysis. They provide
the explicit functional dependence on an arbitrary stress field
Psrd which decays sufficiently fast. The assumptions enter-
ing their derivation aresid that the deviations of the meniscus
profile from the reference configuration are small, allowing
one to confine the analysis to a free energy expression which
is quadratic in the deviations, andsii d the superposition ap-
proximation, which expresses the two-colloid equilibrium
state in terms of the single-colloid state. The analysis shows
that the limit l→ +` is nonsingular only in the case«F
=«P.

A. Flotation force

Equations51d can be used to determine the flotation force.
There are no stresses acting at the meniscus,P;0, while the
forceF on the colloids is due to their weight corrected by the
buoyancy force. Accordingly, Eq.s51d reduces to the flota-
tion potential

Vflotsdd = 2pgr0,ref«Fusdd = 2pgQ2 ln
d

Cl
, sR! d ! ld,

s53d

whereQª«Fr0,ref is known as the capillary chargef17g, by
analogy with two-dimensional electrostatics. The asymptotic
form for d!l originates from a potential proportional to the
modified Bessel functionK0sd/ld fsee Eq.s19dg f24,26g. The
order of magnitude of the capillary charge isQ
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, r0,refsR/ld2. For a typical valueg=0.05 N m−1 at room
temperature and for colloids with a mass density of the order
of 1 g cm−3, the prefactor of the logarithm can be estimated
as

2pgQ2 , S R

10 mm
D6

kBT. s54d

Therefore, compared with the thermal energy, the flotation
force is negligible for submicrometer-sized colloids.

B. Electrically charged colloids

Another application is the case of electrically charged col-
loids. If one of the liquid phases is water, the charge of the
colloid is screenedsthe Debye length of pure water is
<1 mm and smaller in the presence of an electrolyted, and
the effective electric field is that of a dipole oriented perpen-
dicularly to the fluid interfacef4,5,27–29g. The electrostatic
field decays asr−3 and the stress on the meniscus asPsr
→`d~ r−6. Both the electrostatic stress and the osmotic ionic
pressure decay in the same mannerf15g. Thus the total inter-
colloidal potential at intermediate distances is

Vtot = a
kBT

d3 + Vmen sa . 0d. s55d

If gravity is neglected both as a force on the colloid and as a
restoring force for the interfacesl→`d, then one can indeed
show that the ensuing condition of mechanical isolationsno
net force on the systemd leads to«P=«F, i.e., precisely the
situation for which the limitl→` is nonsingular. To see
this, we consider the total stress tensorT which consists of
the Maxwell stress tensorsdue to the electrostatic fieldd and a
diagonal osmotic pressure tensorsdue to the electrolytesd
f18,30g. At interfacesT can be discontinuous. The total vol-
umeV of the system is divided into volumesV1, V2, andV3
ssee Fig. 6 for the explanation of the notation in the follow-
ing equationd. The total force readsfthe superscript+s−d de-
notes evaluation on the positivesnegatived side of the ori-

ented surface, i.e., the side the arrows in Fig. 6 point tosdo
not point todg

R
Stot

dA ·T =E
V1øV2øV3

dVs= ·Td

+E
Smen,reføS1øS2

dA · sT+ − T−d

=E
V1øV2

dVs= ·Td +E
Smen,ref

dA · sT+ − T−d

+ FE
V3

dVs= ·Td +E
S1øS2

dA · sT+ − T−dG
=E

Smen,ref

dAPez + Fez. s56d

In the first line, we have applied Gauss’ theorem with due
account of the possible discontinuities of the tensorT ac-
cross the interfaces. In the second line,= ·T =0 in the fluid
phasesV1 andV2, because the counterion distribution of the
reference configuration is the equilibrium distribution and
thus locally force free. This distribution is considered to be
fixed. The second term in the second line is the total force on
the meniscusswhich can have only a normal componentd,
while the terms in square brackets sum up to the forceF
acting on the colloid.

Thus the vertical component of the total force is

ez ·R
Stot

dA ·T = 2pgr0,refs«P − «Fd. s57d

If it vanishes, as it is the case for an isolated system, then
«P=«F. According to Eq.s51d this implies that the long-
ranged logarithmic contribution toVmen is absent and thus
the limit l→` is regular. Physically this means that there is
no need for a restoring force acting on the fluid-fluid inter-
face when the deformation is created by localized internal
stresses. Instead, according to Eq.s52d, one obtains a poten-
tial Vmen~d−6 for the present case of a dipolar electric field
ssee aboved. This shorter-ranged potential cannot counterbal-
ance the direct electrostatic dipolar repulsion,d−3. Such a
counterbalance would be needed for a straightforward expla-
nation of the aforementioned experimentally observed attrac-
tions.

The line of argument to explain the absence of the loga-
rithmic contribution toVmenwas already put forward in Refs.
f13,15g, where exclusively the casePsrd~ r−6 has been ad-
dressed. Our detailed analysis complements and generalizes
these contributions. In Ref.f13g, Vmensdd is estimated by tak-
ing into account only the degree of freedom “meniscus pro-
file,” usr d, and considering only the change in meniscus area
due to the superposition of the dimples. This corresponds to
retaining only the term~s=u1d ·s=u2d in expressions37d.
Although the type ofd dependence obtained that way is cor-
rect, the sign of the force turns out to be wrongsattraction
instead of repulsiond. The reason is that the contributions
~P1u2 and ~Fū in Eq. s37d are equally important as the
retained term. This is taken into account in the more detailed

FIG. 6. sColor onlined In the reference configuration the whole
system is divided into volumesV1, V2, andV3. VolumeV1 senclosed
by the upper dashed curved includes phase 1, volumeV2 senclosed
by the lower dashed curved includes phase 2, and volumeV3 in-
cludes the interior of the colloid. The arrows indicate the direction
in which the surfacessincluding the infinitesimally displaced onesd
are oriented:Stot encloses the whole system,Smen,ref is the interface
between phase 1 and phase 2, andS1s2d denotes the interface be-
tween the colloid and phase 1s2d.

OETTEL, DOMÍNGUEZ, AND DIETRICH PHYSICAL REVIEW E71, 051401s2005d

051401-10



analysis of Ref.f15g, where the limiting caseR=0 spoint
particled is considered from the outset, so that “height of the
colloid” is not an independent degree of freedom, i.e.,h
=us0d. Correspondingly,F is set to zeros«F=0d, and its ef-
fect is modelled by a Diracd contribution to the stressPsrd
such that«P=0. The potentialVmensdd calculated this way
corresponds to keeping the three terms mentioned above
which are relevantfthe first and third term in the first integral
of Eq. s37d and the last term of Eq.s37dg and to settingl
→`, since this limit is regular when«F=«P=0. Our analysis
has shown that the terms which are dropped in the limitR
→0 fsecond and third integral in Eq.s37d, second, fourth,
and fifth terms in Eq.s39dg yield indeed a subdominant con-
tribution to Eq. s52d. However, the integral appearing as a
prefactor in Eq.s52d is divergent forR→0, so that in Ref.
f15g a short-distance cutoffa has been introduced which is
expected to be of the order ofR. The precise value ofa
depends on the details of the implementation of this cutoff;
for the example used in Ref.f15g, the application of Eq.s52d
yields a=r0,ref.

In the presence of gravity mechanical isolation is violated
and as we have shownu«P−«Fu~ sR/ld2. (The force-balance
argumentfEq. s56dg can be easily generalized to include the
effect of the gravitational volume force.) In the case of a
curved reference interfacescorresponding to the experiment
reported in Ref.f12g using colloids trapped at the interface of
water droplets in oild, Eq. s56d is replaced by

R
Stot

dA ·T =E
Smen,ref

dAPer + Fez, s58d

whereer is the radial unit vector of the unperturbed spherical
droplet. Force balance in the vertical direction yields a factor
er ·ez=cosc ssee Fig. 4d in the integral, which can be ex-
panded for small angles in the limitRdrop→`. This leads to
a curvature-induced correctionu«P−«Fu~ sr0,ref/Rdropd2 even
for mechanical isolation. Thus we see that independently of
the details of the implementation of the distant boundary
conditions the logarithmic term in the potentialVmen fEq.
s51dg has a strength which is proportional to
scolloid size/system lengthd4, which seems nevertheless too
weak to explain the reported attractive total interaction.

1. The experiment reported in Ref. [12]

Mechanical isolation is violated in the presence of an ex-
ternal homogeneous electric fieldEez. For the experimental
setup used in Ref.f12g it cannot be ruled out that such an
external field may have distorted the measurementsf31g.
Since this is the only experiment which provides quantitative
information about the secondary minimum inVtot, we discuss
the case of an external field in more detail. In this experiment
position-recording measurements were performed on a hex-
agonal configuration of seven trapped colloids on a water
droplet immersed in oilsRdrop<32R=24 mmd. The latter was
confined between two glass plates and the droplet stuck on
the upper glass plate with a contact angle close top. Re-
sidual charges might have resided on the upper platef31g.
The measurements yielded the position of the secondary
minimum, dmin<7.6R, and the curvature at the minimum,

Vtot9 sdmind<12.94kBT/R2. With regard to the latter value we
remark that systematic corrections can be estimated to lower
Vtot9 by a factor 2–3. These systematic corrections includesid
multiparticle effects andsii d center-of-mass movement of the
droplet. We have estimated the effect ofsid by carrying out
Langevin simulations of the seven particle system using the
intercolloidal potential Eq.s59d below. As for the effect of
sii d, any shape deformation induced by the moving colloids
changes the center-of-mass position of the droplet since the
droplet is fixed to the upper glass plate. The corresponding
change in the gravitational energy of the droplet translates
into a weak confining potential for the colloids which limits
the stochastic movement of the center-of-mass of the seven
colloids. This effect might be part of an explanation for the
absence of center-of-mass movement observed in Ref.f12g.
According to Eqs.s51d and s55d, the total intercolloidal po-
tential in an external field is

Vtot = a
kBT

d3 − b ln
Cl

d
sa,b . 0d. s59d

Using the aforementioned experimental data fordmin and
Vtot9 sdmind, one obtains from Eq.s59d b<249kBT, a<83dmin

3

andVtotsdmind<−275kBT which is surprisingly deep, even if
reduced by a factor 2–3 due to the systematic corrections
mentioned above. Furthermore, from Eq.s51d we deduceb
=2pgr0,ref

2 s«P−«Fd2 and with g<0.05 N/m we find u«P

−«Fu<s2 nm/r0,refd. The long-ranged meniscus deformation
fsee Eq.s20dg is on the scale of nanometers. The short-
ranged meniscus deformation near the colloid can only be
evaluated with a specific microscopic model forPsrd. For a
rough estimate of«P, we consider the colloid charge to be
concentrated on the surface. The asymptotic behavior of the
stress tensor in this case is given byPsrd=sakBTd / s4pr6d
f4,15g. If we assume this form of the stress tensor to hold for
all r, we find«P<10−4/sin5 u for the values ofg anda given
above. For not too small contact angles, thisa posteriori
justifies the perturbative approach which we have adopted.

If the system has a net chargeq, then uqEu=2pgr0,refu«P

−«Fu=Î2pgb fsee Eqs.s57d ands51dg. Using the values forb
andg as given above we find

uqEu < 3.63 109 eV m−1. s60d

For the valueq<23105 e quoted in Ref.f12g, this yields a
relatively small electric fieldE<1.83104 V m−1, indicating
how sensitive the system can be to spurious external fields.
Alternatively, an electric fieldE,103 V m−1 is sufficient for
the meniscus-induced logarithmic potential to have a depth
of the orderb,1kBT. Thus the external field offers the pos-
sibility to tune easily the capillary long-ranged attraction and
to manipulate the structures formed by the colloids at the
interface.

2. The experiment and analysis reported in Ref. [16]

In Ref. f16g, experimental results for the meniscus defor-
mation around glass particles of radii 200̄300 mm trapped
at water-air or water-oil interfaces are reported. The data for
the meniscus slopeu8sr0d at the contact circle implyfEq.
s17dg «F<0.2 swater-oil interfaced, about fifteen times larger
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than the corresponding«F,g caused by gravity alone. Further-
more, the reported meniscus shape for one sample contains a
logarithmic part which is consistent with«F−«P<0.1
@«F,g fsee Eq.s20dg. As in the experiment analyzed in the
previous subsection, the experimental observations could be
understood within the framework of the theoretical model we
have developed in terms of an external electric field violating
mechanical isolation. Yet independently of us, the authors of
Ref. f16g have developed a theoretical model based on the
same physical hypotheses as our approach which, they claim,
explains the observed long-ranged meniscus deformation.
Here we would like to note two important errors which flaw
their analysis.

s1d Eq. s3.15d in Ref. f16g, in terms of which they inter-
pret their observations, can be obtained by inserting the
large-distancesr @ r0,refd asymptotic behavior ofPsrd in our
Eq. s20d fequivalent to their Eq.s3.14d up to an additive
constantg both into the integral termand into the definition of
«P fEq. s2dg. Since the dominant contribution to the integral
defining «P stems from pointsr . r0,ref, this procedure is
clearly inadmissible. As a consequence, they obtain a wrong,
nonvanishing prefactor of the logarithm, in spite of their ex-
plicit consideration of mechanical isolationfsee their Eq.
s6.6dg.

s2d In order to calculate the intercolloidal effective poten-
tial within the superposition approximation, the formula re-
lating Vmensdd to the meniscus deformationusdd in the pres-
ence of gravity alonefi.e., Eq.s53dg is applied even though
PÞ0. Thus, an additional term contributing to the leading
logarithm is not includedfcompare their Eq.s3.16d and our
Eq. s51dg.

In Ref. f16g also a numerical analysis is carried out. A
detailed study of the relation between the results of this nu-
merical analysis and our theoretical predictions will be pub-
lished elsewhere.

It may be possible that the presence of an external field is
consistent with the data from Refs.f12,16g, as well as with
the presence of the secondary potential minimum observed
in the experiments using planar troughs, in particular in the
casesdmin.10R, which fall into the intermediate asymptotic
regime considered here. But this still remains as an open
problem.

C. Outlook

Given that already nanometer distortions of the meniscus
produce noticeable attractions, the surface topography of col-
loids might be relevant. In Ref.f10g, colloidal surface rough-
ness is proposed as an explanation of the attraction. The
meniscus contact line is assumed to be pinned at defects on
the colloid surface caused by surface roughness. This im-
poses a different boundary condition for the meniscus at con-
tact, which is then deformed even in the absence of electro-
static forces. The corresponding analysis in Ref.f10g is
concerned only with the term~s=u1d ·s=u2d in the expres-
sion s37d, leading to the conclusion thatVmensdd decays as
d−4 and corresponds to an attractive potential with a strength
of 104 kBT for meniscus deformations of the order of 50 nm.
This conclusion, however, cannot be simply carried over to

the case of charged colloids. As we have shown the contri-
butions of the terms~P1u2 and~Fū in Eq. s37d are relevant
and can change the qualitative behavior ofVmensdd even in
the limit of point colloids. It would be worthwhile to gener-
alize the analysis of Ref.f10g along the line of arguments
presented here in order to assess the importance of surface
roughness. This should be complemented by more precise
experimental information about the actual colloidal topogra-
phy.

Recently, an explanation based on a contaminated inter-
face has been advocatedf32g. The air-water interface would
be actually a two-dimensional emulsion consisting of hydro-
phylic swaterd patches and hydrophobicssilicon oild patches.
The colloidal particlesshydrophobic in character according
to Ref.f32gd would cluster in the hydrophobic patches. Thus,
confinement of the colloids by finite-size hydrophobic
patches would give the impression of an effective intercol-
loidal attraction. At present, this explanation is only of quali-
tative nature.

Thermal fluctuations of the interface position around its
mean valueusr d also induce an effective interaction between
the colloids which confine these fluctuationssCasimir-like
forced. Using a Gaussian model of the fluctuating interface in
analogy to the procedure employed in Ref.f33g for calculat-
ing fluctuation-induced forces between rods in a membrane,
one finds for uncharged colloids a fluctuation-induced poten-
tial Vfluc.−kBTsr0,ref/dd4, which is too small and falls off
more rapidly than the intercolloidal dipole repulsion. Here,
the generalization to the charged case might give hints for
the effective attractions betweenverysmall particles trapped
at interfaces. Concerning particle sizes well below the Debye
length, one should modify our analysis to account for the
overlap of the screening ionic cloudsfthis would affect, e.g.,
the superposition approximation for the stress fieldP, Eq.
s31dg.

Finally, in Ref.f34g the attraction of particles trapped at a
nematic-air interface is reported and an explanation in terms
of a logarithmic meniscus deformation is proposed which
parallels the explanation given in Ref.f12g: in this case, the
deformation would be caused by the elastic distortion in-
duced by the particles on the nematic phasef34g. Our de-
tailed theoretical treatment shows that no long-rangesloga-
rithmicd meniscus distortion can arise on an interface if the
system is mechanically isolated and the excess free energy of
the perturbed interface is correctly described by an expres-
sion like Eq.s13d. Thus it appears that the simple explanation
of the observed colloidal attractions given in Ref.f34g is not
correct. However, it is not clear whether the free energy of a
distorted nematic-air interface is equivalent to that of a
simple fluid interface due to the long-ranged interactions in
the nematic bulk caused by defects. Thus, a generalization of
our theory to interfaces involving nematic phases would be
desirable in order to assess the possibility of long-ranged
colloidal attractions in more detail.

V. SUMMARY

We have analyzed the effective force induced by capillary
deformation between two smooth spherical colloids floating
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at a fluid interface. The relevant degrees of freedom are the
meniscus deformation and the height of the colloidssFig. 2d,
whose equilibrium values are given by minimization of a
free energy functional. This functional was derived assuming
small deviations from a reference configurationsFig. 1d. It
incorporates the surface tensions of the three interfaces in-
volved s“colloid-fluid phase 1,” “colloid-fluid phase 2,” and
“fluid phase 1-fluid phase 2”d, the potential energy of the
colloids under the action of a forceF, the potential energy of
the fluid interface in an arbitrary surface stress fieldPsr d,
and the potential energy due to a restoring force acting on the
interfacefEqs. s4d–s13dg. The effective intercolloidal poten-
tial fEq. s36dg was calculated in the limit of large separations
by using the superposition approximationfEq. s31dg. We
have shown in this limit that the contribution to the effective
potential by the interfaces colloid-fluid phases is subdomi-
nant. If the total force acting on the system, consisting of the
two colloids and the meniscus, does not vanish, the presence
of the restoring force acting on the fluid interface is
essential—although its precise form does not mattersSec.
II Cd. In this case, the effective interaction is long-ranged and
attractivefEq. s51dg. If the total force vanishes, the restoring
force is irrelevant altogether, the effective interaction is
shorter rangedfEq. s52dg, and it cannot be computed reliably
within the superposition approximation.

As an application, we have considered the case of like-
charged, micrometer-sized particles when the capillary defor-
mation is due to the ensuing electrostatic field. We have dis-
cussed how one can tune the long-ranged attractive
interaction by an external electric field, but we conclude that
the experimentally observed attraction in an isolated system
cannot be explained within the present model. Possible di-
rections for future research such as colloidal surface rough-
ness and fluctuations of the interface have been discussed.
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APPENDIX A: FREE ENERGY OF COLLOID-FLUID
CONTACT

In this appendix we determine the contribution to the free
energy due to the exposure of the colloid to the two fluid
phases. Here we consider the general case of no rotational
invariance, so that the meniscus heightusr ,wd depends on
the distancer from the axis through the colloid center and on
the angle of revolutionw around this axissFig. 7d. Accord-
ingly, the auxiliary variablesr0swd andjswd also depend on
the revolution angle and one has

r0swd = Rsinjswd sA1d

and

h = u„r0swd,w… − Rcosjswd, sA2d

whereu(r0swd ,w) is the meniscus height at contact. The sur-
face areas of the colloid in contact with phases 1 and 2 are

A1 = R2E
0

2p

dwE
0

jswd

dc sinc = R2E
0

2p

dwf1 − cosjswdg

sA3d

and

A2 = 4pR2 − A1, sA4d

respectively. The expression for the free energy in Eq.s5d is
based on these formulas for the special casejrefswd=u sFig.
1d and on Young’s lawfEq. s1dg:

Fcont= gR2E
0

2p

dwfcos2 u − cosu cosjswdg

= 1
2gR2E

0

2p

dwfcosjswd − cosug2

+ 1
2gR2E

0

2p

dwfcos2u − cos2 jswdg

= 1
2gE

0

2p

dwhu„r0swd,w… − Dhj2

+ 1
2gE

0

2p

dwfr0
2swd − r0,ref

2 g. sA5d

The second term, which arises upon completing the square,
represents the change of the meniscus area which is cut out
by the colloid. Sinceu andDh are already of first order in«P

or «F, one can replacer0swd by r0,ref in the first term and
obtains

Fcont.
1
2gE

0

2p

dwfusr0,ref,wd − Dhg2

+ 1
2gE

0

2p

dwfr0
2swd − r0,ref

2 g, sA6d

plus corrections of at least third order in«P or «F. In the
special case of rotational invariance, this expression reduces
to Eq. s6d. For the purpose of Sec. III one can rewrite Eq.
sA6d as the line integral

Fcont.
g

2r0,ref
R

]S

d,hfu − Dhg2 + fr0
2 − r0,ref

2 gj, sA7d

whereS is a circular disk of radiusr0,ref, here centered at the
origin, and]S denotes its circumference.

APPENDIX B: DEFORMATION OF A SPHERICAL
REFERENCE INTERFACE

In this appendix we calculate the deformation of the in-
terface of a spherical droplet due to a floating colloidal par-
ticle. The reference configuration corresponds to a colloid
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floating at the surface of the spherical droplet such that Eq.
s1d is fulfilled. Here we will consider only axially symmetric
configurationsssee Fig. 4d. In terms of the polar anglec
P f0,pg, the distancer measured along the unperturbed
spherical droplet surface isr =Rdropc. fNote that in this ap-
pendix we considerus·d andPs·d as functions ofc instead of
r.g We definec0ª r0,ref/Rdrop and we introduce the anglec1
with p.c1@c0 at which another boundary conditionsto be
specified belowd holds reflecting the fact that the droplet is
fixed in space. With this additional boundary condition we
model closely the actual experimental setup of Ref.f12g,
where the droplet was attached to a glass plate with a contact
angle less thanp f31g.

For the present case the free energy given by Eq.s13d
must be modified in several ways:

In spherical coordinates,Fmen reads

Fmen= gE
Smen

dAsRdrop+ ud2Î1 +U =u

Rdrop+ u
U2

− gE
Smen,ref

dARdrop
2 , sB1d

wheredA=2p sincdc is the differential of the solid angle,
and==ecsd/dcd is the gradient operator on the unit sphere.
As before, this functional is now expanded for small devia-
tions from the reference configuration, and we obtain

Fmen. gpsr0,ref
2 − r0

2d + 2pgE
c0

c1

dc

3sincF1

2
S du

dc
D2

+ u2 + 2RdropuG , sB2d

where we have neglected terms evaluated atc0 which vanish
in the limit Rdrop→`.

The termFinter in Eq. s11d has to be amended by the extra
work upon deformation which is caused by the pressure dif-
ference in the reference configuration between the interior
and the exterior of the droplet,DP=2g /Rdrop:

Finter = −E
Smen

dAFRdrop
2 Pu + sDPdE

0

u

dũsRdrop+ ũd2G
. − 2pgE

c0

c1

dc sincFRdrop
2

g
Pu + s2Rdropu + 2u2dG .

sB3d

SinceDP is of order«0, we have to keep also terms~u2 in
this expression for consistency. For simplicity we have ne-
glected the contribution due to the change ofSmen during the
deformation. Such a term would affect the behavior of the
meniscus only nearc0 and vanishes in the limitRdrop→`.

The change in volume of the perturbed droplet reads

DV =E
Smen

dA1
3sRdrop+ ud3 −E

Smen,ref

dA1
3Rdrop

3 + d,

sB4d

whered is a contribution due to the spherical shape of the
colloid; it depends onDh and Dr0 but can be safely ne-
glected.fThis is the same kind of term encountered in cal-
culatingFvol, see Eq.s10d.g ExpandingDV for small defor-
mationsu up to linear order yields

DV . 2pRdrop
2 E

c0

c1

dc sincu. sB5d

Physically, the deformation of the interface occurs under the
constraint that the droplet volume remains unchanged be-
cause incompressibility is assumed. This constraintsDV=0d
will be implemented in the free energy functional by means
of a Lagrange multiplierm which itself turns out to be linear
in the parameters«P and«F. This justifies keeping only the
linear term in Eq.sB5d.

The contributionFcont fsee Eq.s6dg is concerned only
with quantities atc0, the colloid surface, and thus in the limit
of large droplet radii this contribution is the same as in the
planar case. The free energy related to the work done upon
moving the colloid,Fcoll fsee Eq.s12dg, remains also un-
changed. For simplicity we also neglect gravity and setl−1

=0. In conclusion, the free energy functional to be mini-
mized is the sumFcont+Fmen+Finter+Fcoll plus the constraint
term s2pg /RdropdmDV swherem is a dimensionless Lagrange
multiplierd:

FIG. 7. Geometric description of the three-phase contact line
between the fluid-fluid interface and the surface of the colloid. Side
view sad: The auxiliary variablesr0swd andjswd in general depend
on the angle of revolutionw. c denotes the polar angle of points on
the colloid spherical surface. Top viewsbd: The dashed line is the
circumference of radiusR of the spherical colloid. The solid line is
the projection of a noncircular contact line.
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F = 2pgE
c0

c1

dc sincF1

2
S du

dc
D2

− u2 + mRdropu −
Rdrop

2

g
PuG

+ pgfu0 − Dhg2 − FDh. sB6d

The quantity −gm /Rdrop can be interpreted as a homogeneous
pressure field enforcing the constant-volume constraint. We
note that the terms linear inu present in Eqs.sB2d andsB3d
have cancelled in the total free energy. Minimization with
respect toDh yields the same result as in Eq.s14d. Subse-
quent minimization with respect touscd leads to

1

sinc

d

dc
Ssinc

du

dc
D + 2u = −

Rdrop
2

g
P + mRdrop sB7d

and fcompare with Eq.s17dg

U du

dc
U

c0

= «FRdrop. sB8d

The solution must satisfy the constant-volume constraint

E
c0

c1

dc sincuscd = 0. sB9d

Finally, the second boundary condition mentioned at the be-
ginning expresses the physical requirement that the droplet is
fixed in space.sOtherwise, the application of a localized
force at the interface would shift the droplet as a whole with-
out deforming it.d As an example, we assume that the droplet
interface is pinned atc1 sanother example, force balance by
suitable localized counterstresses, is studied in Ref.f35gd:

usc = c1d = 0. sB10d

The general solution of the inhomogeneous Legendre Eq.
sB7d is

uscd = APscd + BQscd +
1

2
mRdrop

+
Rdrop

2

g
E

c

c1

ds sinsfPssdQscd − PscdQssdgPssd,

sB11d

whereA andB are integration constants and

Pscd ª cosc,

Qscd ª 1 + cosc ln tan
c

2
, sB12d

are solutions of the homogeneous Legendre equation. For
notational simplicity, evaluation of a function atc0sc1d will
be denoted by the subscript0s1d.

From Eq.sB10d one obtains

1
2mRdrop= − AP1 − BQ1. sB13d

From the other boundary conditionsB8d it follows that

«FRdrop= AP80 + BQ80 +
Rdrop

2

g
E

c0

c1

ds sinsWssdPssd,

sB14d

where we have defined the auxiliary function

Wssd ª fPssdQ08 − P08Qssdg. sB15d

Finally, in order to impose the integral constraintsB9d we
employ the following identities:

E
c0

c1

dc sincE
c

c1

ds sinsfPssdQscd − PscdQssdgPssd

=E
c0

c1

ds sinsPssdE
c0

s

dc sincfPssdQscd

− PscdQssdg

= −E
c0

c1

ds sinsPssd
1

2
F1 −

Wssd
W0

G . sB16d

The first equality follows from interchanging the order of
integration. The last equality follows most easily by noticing
sid that thec integral in the second line is, as a function ofs,
a solution of the differential Eq.sB7d with u replaced by this
integral,mRdrop replaced by −1,P=0, and the analogs of the
boundary conditionsu0=0=u08, and sii d that the function
sWssd /W0−1d /2 is the solution to the same differential
equation with the same boundary conditions. With these
identities Eq.sB9d turns into

0 = AP + BQ −
Rdrop

2

2g
E

c0

c1

ds sinsPssdF1 −
Wssd
W0

G ,

sB17d

where we have introduced the numerical constants

P ª E
c0

c1

dc sincfPscd − P1g

Q ª E
c0

c1

dc sincfQscd − Q1g. sB18d

We note that the constantsA and B are determined by the
two linear Eqs.sB14d and sB17d.

These results permit us to study the intermediate
asymptotic regimer0,ref,r !Rdrop. In the expressions derived
above, we have to take the limitRdrop→` while keeping
fixed c1, r =Rdropc and r0,ref=Rdropc0 sso thatc0,c!1d. In
this limit, the constantsP and Q are finite, whilePscd.1
and Qscd. lnsr /Rdropd−ln 2+1. The integrals overP ap-
pearing in Eqs.sB11d, sB14d, andsB17d are simplified when
the stress fieldPscd decays sufficiently fast. So, e.g.,
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E
c0

c1

ds sinsWssdPssd

=
1

Rdrop
E

r0,ref

c1Rdrop

dssinS s

Rdrop
DWS s

Rdrop
DPS s

Rdrop
D

.
1

Rdrop
2 SRdrop

r0,ref
DE

r0,ref

+`

dssPS s

Rdrop
D , sB19d

since the main contribution of the integrand stems from the
regions/Rdrop!1, in which Wss/Rdropd.Rdrop/ r0,ref. In this
manner, we obtain from Eq.sB14d:

B . r0s«F − «Pd, sB20d

and Eq.sB17d yields

A . −
Q
P r0s«F − «Pd. sB21d

One finds indeed that the Lagrange multiplierm determined
by Eq.sB13d is linear in«F−«P. Finally, the general solution
sB11d simplifies to

u . As1 − P1d + BSln
r

Rdrop
− ln 2 + 1 −Q1D

−
1

g
E

r

+`

dssPS s

Rdrop
Dln

s

r
, sB22d

which renders Eq.s24d with the constant

C̃ = 2 expFs1 − P1d
Q
P + Q1 − 1G . sB23d

This constant is finite and non-vanishing providedc1 is not
close top. The casec1=p is pathological becauseu8spd
;0 for a smooth profile, so that the boundary condition
sB10d would overdetermine the problem.
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